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OUTLINE

¥ Cosmic Anomaly
‘* park Matter Subhalos outstde
¥ Dark Matter subhalos tnside

¥ Particle Ph 35&05 reallzatlon



cosmie RA Yy Anomaly

¥ Charged Cosmic Particles

Positron fraction o(e") 1 (p(e™)* p(e))

X Posttron fraction (>105¢ev)
PAMELA 0.01; .PAATELA' T Ll

¥ Electron+Positron
Peaking around 5005ev
Ferml

Scaled particle fux




Dark Matter

* The Phenomena have no known astrophysics origin
(Could be pulsar?)

¥ Attractive explanation: 1 Tev WIMP

DM + DM — messengers fields @ (on shell)
— SM particles. ,
WMo <2Mopston

Somwmerfeld enhancement to cross section
<Oov>=BF X 3X102%cm3s™*

* Two Lesues:
Gamma RaQa 3?
substructure?






Subhalos contributions

¥ Positive contribution
Large Number 20,000 subhalos
High density
small dispersion \/eLoci’cg
sub-substructure

¥ Negative contribution
long distance to the milky way



GALPROP+Via Lactea It

* GALPROP Numerioaug solve diffuston equation of
electrons and posutrows

—we (%, p,t) = Qex(x,E)+ V- (D(E)Vipex (X, p, 1)) b(x, E)Y+ (%, p, 1)]

+8—E[(

¥ Source

R 2 r\
¥ Maiw halo: pgin(r) = psexp {—a [(—) — 1] }
subhalo 1
q)"\—%—" 0 ///@

¥ subhalos: G
stmilar dews£t5 proﬁLe, &
8 k
p01 g diffusion zone

20 kpc
¥ Chawge the bouwdarg condition o-(: GALPROP |05

using the subhalos data from via Lactea



Maiwnhalo+Subhalo

¥ better fit to PAMELA and Fermi with 2.2 Tev WIMP
whewn subhalos are included (BFsy=3744,BFmn=92)

¥ Larger mass s because of Larger propagation
distance. The energy loss is due to Inverse Compton
Scattering with CMB, IR and Starlight
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C,ammaRQ5

Best DM awvu,ml,atww mochs Predwt much Larger gamma ray -ﬁ,u)(cs '
near the gaLac’cw center (C.C) from Final state radiation
| (Bresstmhtuwg) anad (vwersc comptow swttenwg (tcs)

\Mos‘c. Cownstrints

come from ICS here

we used the first year of Fermi LAT difuse QaAMMA ¥ Y (Aug g 2008
 to Aug 25 2009) data available -from NASA to constrain the -
aLLowabLe DM annhihilatton.




Numeriteal Result

¥ Adding subhalos and still explaining PAMELA and
Fermi only slightly reduce the gamma ray
constraints

* Density of PM main halo in the GC is still high

'y
(=]

¥ PM Proﬁ!,e and -ﬁwa!,
state (4e,4uw,,e) has
some Lmpact on it, but

10 ¢

e Fermidata
ICS from background
| ——MH FSR

[| == MH ICS

me= MH+SH scenario
----- MH+SH: MH contribution only|
— — — MH+SH: SH contribution only
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not enough
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what about Local subhalo?

¥ 100(s) subhalos tnside the galaxy from via Lactrea
 swmall velocity, high density anad close to us

K PAMELA and Fermi excess can come from the close
subhalo

¥ we are within 3 kpe of subhalo centre, but further
away thawn 20pc.
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Predicted/observed flux

where Ls the subhalo

¥ SHAL - SH4 are from via Lactea , and SH5 is
engineered by choosing parameters close to SH4.
SHS5 s with a higher alewsitg (so Lower BF)

gamma' rays

electrons
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The five subhalos

¥ They are atypical in the sense of needing a higher -
thaw average central density.

X alarge . Ls unlikely at small distances from the gC
due to tidal ollsruqatiow.

¥ each subhalo was situated along an optimal axis,
namely that connecting the earth to the GC.

* The biggest contribution of Gamma Ray is from
final -state bremsstrahlung rather than ICS.
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Close sSubhalo awiso’cropg

¥ Fermul DipoLe awisotropg = 10

of electron and positron
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bound too high to be seen)

single subhalo 500 GeV dipole|]
single subhalo 50 GeV dipole |;

-2

10

107 10° 10'
distance from Earth to SH center (kpc)

10

2

14



Particle Ph gsics
realization

X certain values for the cross section BF are needed for
the subhalos

* upper bound of BF for main halo

¥ 1< there siwq:Le Partiele Phgsios meodel can be
consistent with the requirements.
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Sommerfeld enhancement

¥ The non-relativistic particles are moving in some
potential. The wave function s distorted by the
attractive potential. Or Summing over all the Ladder
Feynman diagram (QFT)

X X

X X

= V(r)y(r) = —mB%p(r)

¥ Cownsider a DM particle with a U (1) coupling to a dark
gauge boson of mass u (o (1) gev)

3 Ustng realistic \/CLOOLtH distribution and correct o,
this tgpicaLLg predicts too much enhancement.
Gamma ray constraints are tmmediately saturated.
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Effective Boost Factor

¥ 1t Ls not obvious that one can find models with the
destred BF for subhalos and wmain halo.

X leptophilic DM is a subdominant component of the
total DM, comprising some fraction 1/f.

¥ Cross section <OV>~02/ M2
Parametrize 0=VF o,
BY solving Boltzmanwn eq., the relic dewsitg s
proportional to <ov>1
Therefore, the rate of annihilations goes Like
020 x 1/f. Accordingly, we define an effective BF
e
f
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Theoretical fits

¥ Given o = boost factors for main and subhalos

* The working example (Larger f is needed for a cuspy
maiw halo)

‘ \ ‘ \ ‘ \ i ‘ L  _90 ‘
- Einasto profile, f=2500, V__ =277 km/s 7Isothermal, f=50, V .. =201 km/s
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SuUumnma rg

K we can get better fit to the lepton data by tncluding
all the DM subhalos, but the gamma ray constraints
are still too strong

¥ close subhalo can explain PAMELA/Fermi, also
consistent with Fermi LAT diffuse gamma ray
su.rveg

¥ caveat: Need Large, dense subhalos

¥ A realistic LU (1) model tgpioaLLg produce too much
enhancement. This can be solved if only part of the
DM can annihilate to SM particles tn this channel.
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(Thank you



Release qamwma Ra Y
Constraints

¥ Electron-positron distribution

* subhalos gamma rays are from all the directions
outstole

* Main halo gamwma rays are largely from the centre of
the galaxy, because of the peak of the density profile
of PM
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Gamma RaY Constraints

X we obtained the constraints for the M boost factor tn
the case of Ewnasto DM profile, annthilation to 4¢

BF<25(35) at 16(20) for Mpu=1Tev
BF<42(52) at 16 (20) for Mpu=2.2Tev

¥ nereasing tntermediate gauge boson to allow decay
tou and

BF<23(38) at 16 (20) for Mpu=1.2Tev

¥ And choosing a flatter isothermal DM density profile
BF<e2(F2) at 16(20) for Mpm=1.2Tev
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Diffusion Equation

K Sewmi-analytic approach to solve the diffusion eq.

* Rlis the source term from subhalo
1 (p(x) ° dN  n? dN
@= 5( M ) (o0 gg = 5 By

DM density profiles
00000 .

¥ subhalo has the similar

PM 0[6V\«Sf«t5 distribution [ o
as the main halo. Ny

(87 Burkert 7’:,,\
2 A = orp i isothermal
IOE’I,’)’L (T) — pS eXp - — — 1 quasi isothermal
0% TS 0.01 |

Piao(r) = —22
14 (r/rs)? :

(r) [arbitr. units]
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Fuve subhalos

¥ sawmple subhalos from the via Lactea 1 simulation.
Usiting them fitting the PAMELA/Fermi Lepton fluxes
and Fermi gamma ray fluxes.

Subhalo | 75 (kpc) Ps log BF | dmin (p¢) | Vimax (km/s)
1 0.01 69 4.74 33.9 2.9
2 0.1 3.46 | 4.34 95.5 6.7
3 3.2 0.04 | 3.76 178 22
4 0.9 1.27 | 2.35 165 36
5 1.1 2.0 1.70 170 55
Main halo, 4e channel
Einasto 25 | 0.048 | < {7 - 201 — 277
Isothermal | 3.2 A | < — 201 — 277
Main halo, 4e + 4 + 47 channel
Einasto 25 0.048 | < 1739 -~ 201 — 277
Isothermal | 3.2 2= — 201 — 277




Close sSubhalo vs.

mawn hao

* qamma ray fluxes on
galactic latitwde b, tn the
reglon -9°<L<9°
at E=23 qev.

do/dQ dE (MeV Tem2s™"sr™
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RBLLO Dewsﬁtg Constraint

¥ Sommerfeld enhancement sensitively relies on o

* Model: DM has a U (1) gauge symmetry.
Kinetic mixing €B |, F*V.

¥ There are two Rinds of final states for annihilation of
bBm EZ‘MF ) 4% (1 + 20?), xx — BB
4 N 29%¢*(1 — v? cos? 8), xx — hh

g Ls the U (1) charge of h relative to Y.
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Rf,Lio Dewsﬁtg Constraint

* nclude approximately the effect of Sommerfeld
enhancement, the cross sectiow is given by
(Cline, Frey, Fang 1008.1784)

7'('0&2
<0"Urel> = 2M92 (a’ (1 + Oég\/@) 0.035
T ) s o0
=S M(b — %a) <% + Qg W%)) E 0.037.“\\\
a = 1+%Ziqi27 b=2(1- 11_221‘1@2) = 0.025F
X
=™ 0.02f
* a=Vf o, f>1

‘ ! ‘ ! ‘
0 5 10 15
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why f?

K The failure to satisfy the bounds drives us to
constoer f
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CMB and rRelie bewsitg
constratnts

¥ the dilution of PM
density by 1/f tnsures
that the model satisfies
stringent CM®B
constraints from
changing the optical depth
(Slatyer, ete, 0906.1197,
Cirelllt and Cline,

1005.1779)
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